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Abstract

Compressive sensing (CS) is a technique for signal reconstruction from
undersampled measurements. Applying CS to MR imaging may speed up
MRI scan times, reducing costs and mitigating noisy artifacts caused by
movement. In this work, we evaluate a denoising neural network known
as FFDNet, with the motivation of applying FFDNet to the plug-and-
play (PnP) algorithms for image reconstruction. Relative to BM3D and
TV denoising approaches, FFDNet was the most performant denoiser, as
indicated by restorations with the highest average PSNR and SNR values.

1 Introduction

Data compression is widely used for transmitting and storing data in all forms,
including audio recordings and natural images. Compressive sensing (CS) is a
powerful sampling paradigm that allows us to reconstruct signals using signif-
icantly fewer samples than the number of samples we normally acquire to sat-
isfy the Shannon-Nyquist theorem. Compressive sensing relies on two tenets:
sparsity and incoherence. For an image (and more generally, a signal) to be
reconstructed using CS, the image needs to have a concise representation in a
transform domain (such that small coefficients in the transform domain may be
set to zero without perceptual loss of information). Secondly, artifacts caused by
undersampling should resemble noise in the transform domain. In other words,
undersampling of the image needs to be done in semi-random fashion, so that
artifacts may be removed using a denoiser [2].

Magnetic resonance imaging (MRI) dovetails with compressive sensing be-
cause most MR images have a suitable sparsifying transformation. MR imaging
helps physicians image soft tissues and organs, diagnose diseases, and monitor
patient treatments. MRI is non-invasive and requires no radiation, as opposed to
other medical imaging modalities. On the other hand, MRI is time-consuming
and susceptible to noise due to movement. Compressive sensing may help drive
down the time and costs of an MRI scan, reducing noisy measurements [1] In
particular, compressive sensing techniques may help image patients who have
difficulty remaining still for the duration of an MRI scan, including young chil-
dren and mentally ill patients.
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Recovering MR images from undersampled k-space measurements requires
a robust reconstruction algorithm. In 2018, Yu et al. developed an online
variation and extension of PnP algorithms for large-scale image reconstruction.
Similar to traditional PnP algorithms, these variations rely on a denoiser to
remove artifacts for every iteration of image reconstruction [3]. In this study,
we examine the effectiveness of FFDNet as a denoiser for brain MRI scans.
Ultimately, our goal is to develop a robust denoiser to be used in the denoising
step of the PnP iterative algorithms for MR image reconstruction.

2 Related Work

In 2013, Venkatakrishnan et al. developed the Plug-and-Play (PnP) framework
that enables using denoisers as priors for image reconstruction. In doing so, the
proximal operator in an iterative reconstruction algorithm is substituted by a
denoiser, such as K-SVD and BM3D. A limitation of the PnP framework is its
use batch processing; every iteration processes the full set of data [5]. To address
this limitation, Yu et al. developed variants of PnP for processing very large
datasets. Ready applications for these variants include 3D imaging applications,
such as MR imaging, and imaging of dynamic items [3].

2.1 FFDNet as prior

Various denoisers have been employed as priors for the PnP framework, in-
cluding BM3D and TV [5]. Deep-learning-based denoisers, such as the popular
DnCNN [7] with residual learning, have also been tested.

Using DnCNN for its intermediate layers, FFDNet is capable of denoising
2D synthetic images with additive white gaussian noise (AWGN) from a wide
range of noise levels. Additionally, FFDNet demonstrated faster performance
compared to BM3D denoising. However, FFDNet fails to denoise authentic
noisy images well [6]. Although FFDNet suffers from this shortcoming, we chose
to evaluate this network because our goal was to denoise MR images artificially
corrupted with AWGN. Real noisy MRI datasets are typically discarded as
physicians cannot glean information from noisy scans.

In this study, we assessed the denoising performance of FFDNet relative
to BM3D and TV denoising. FFDNet was chosen for its speed and ability
to perform blind denoising of noise from a wide range noise levels. Unlike
DnCNN, FFDNet uses a noise level map as input. In addition, FFDNet denoises
downsampled sub-images rather than denoising the full-resolution input. Due to
time constraints, the application of FFDNet in the PnP framework was observed
but neither rigorously tested nor formally documented.

3 Methods

We evaluate the performance of FFDNet against two popular denoising algo-
rithms: total variation (TV) and BM3D. To quantify denoising performance, we
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use peak signal-to-noise (PSNR) and signal-to-noise ratio (SNR) image quality
metrics.

3.1 Experimental Settings

We used anonymized brain MRI images of 22 patients who were scanned at
the Washington University School of Medicine in St. Louis. These 22 patients
are healthy individuals with normal neurocognitive function. We designated
this dataset as ground truth. Each brain scan consists of a 3D volumetric scan
with 10 echoes, yielding 4D measurements. Our dataset was then divided into
slices along the depth dimension. Grayscale and RGB images consist of 1 and
3 channels, respectively. In our study, each MRI slice has 10 associated echoes,
which we effectively treat as a ”10-channel” image.

FFDNet was originally designed to denoise 2D grayscale and RGB images.
Modifications to the PyTorch implementation of FFDNet [4] were made to ac-
commodate 10-channel image input. These changes are reflected in the project
GitHub repository. Additional adjustments were made to ensure the code runs
using Python 3.6 and Pytorch 1.2.

Our dataset consists of 256 x 192 x 72 x 10 scans with the first three dimen-
sions representing the height, width, and depth dimensions. The last dimension
represents the number of echoes (treated as the number of channels). The MRI
dataset was divided into three separate sets for training (70%), validation (15%),
and testing (15%). The batch size for training was 64 images, cropped into 44
x 44 patches.

The following two tables (Table 1 and Table 2) summarize the training con-
figuration of our modified FFDNet. Table 2 displays the number of MRI slices
used for each set.

Number of Conv Layers 12
Number of Feature Maps 96
Noise Level Range [0, 75]
Training Patch Size 44 x 44
Epochs 70

Table 1: FFDNet training configuration

Set Depth-wise Slices
Training 1100
Validation 236
Testing 236

Table 2: Division of brain MRI dataset for training FFDNet

In our study, additive white Gaussian noise (with σ1 = 15 and σ2 = 50)
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was added to the ground truth images. These noisy images were then fed as
input to FFDNet. For baseline comparison, total variation and BM3D denoising
algorithms were applied to the same noisy images.

4 Results and Discussion

The following tables summarize the performance of FFDNet on our brain MRI
dataset. On average, FFDNet outperformed both BM3D and TV when tasked
with denoising images corrupted by AWGN with σ1 = 15 and σ2 = 50. Visual
inspection of images denoised by FFDNet demonstrated that FFDNet preserves
fine details better than BM3D and TV (as demonstrated in Figure 1 and Figure
2). Using FFDNet as a prior in the PnP framework yielded very poor MR image
reconstructions, as the APGM reconstruction algorithm failed to converge.

Denoiser Average PSNR Average SNR
FFDNet 37.731 23.551
BM3D 36.067 21.888
TV 33.928 19.749

Table 3: Denoising results (σ1 = 15)

Denoiser Average PSNR Average SNR
FFDNet 33.647 19.468
BM3D 30.494 16.315
TV 28.484 14.304

Table 4: Denoising results (σ2 = 50)

5 Conclusions and Future Work

In this study, we assessed the denoising performance of FFDNet for brain MRI
images corrupted with additive white Gaussian noise. Results on our brain MRI
dataset show that FFDNet outperforms BM3D and TV denoising on average.
FFDNet improves the quantitative and perceptual quality of noisy MRI scans
as measured by PSNR and SNR image quality metrics.

Future work will focus on experimenting with additional CNN architectures
(including 3D architectures) and applying the most performant denoiser to PnP
algorithms.
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Figure 1: Example of restoration results using various denoisers (σ1 = 15).

5



Figure 2: Example of restoration results using various denoisers (σ2 = 50).
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